首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3535篇
  免费   467篇
  国内免费   214篇
电工技术   138篇
综合类   227篇
化学工业   305篇
金属工艺   86篇
机械仪表   77篇
建筑科学   221篇
矿业工程   64篇
能源动力   1138篇
轻工业   52篇
水利工程   99篇
石油天然气   68篇
武器工业   14篇
无线电   685篇
一般工业技术   563篇
冶金工业   61篇
原子能技术   21篇
自动化技术   397篇
  2024年   9篇
  2023年   202篇
  2022年   284篇
  2021年   289篇
  2020年   280篇
  2019年   286篇
  2018年   205篇
  2017年   203篇
  2016年   149篇
  2015年   149篇
  2014年   211篇
  2013年   215篇
  2012年   228篇
  2011年   219篇
  2010年   151篇
  2009年   163篇
  2008年   133篇
  2007年   148篇
  2006年   115篇
  2005年   99篇
  2004年   63篇
  2003年   80篇
  2002年   65篇
  2001年   49篇
  2000年   57篇
  1999年   30篇
  1998年   31篇
  1997年   29篇
  1996年   8篇
  1995年   13篇
  1994年   16篇
  1993年   11篇
  1992年   6篇
  1991年   2篇
  1990年   4篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1984年   3篇
  1983年   1篇
排序方式: 共有4216条查询结果,搜索用时 46 毫秒
71.
Surface decoration of photoanodes with oxygen evolution cocatalysts is an efficient approach to improve the photoelectrochemical water splitting performance. Herein, ultrafine CoOx was selectively immobilized on the surface of BiVO4/WO3 photoanode by using the photogenerated holes to in-situ oxidize Co4O4 cubane. The composited photoanode (CoOx/BiVO4/WO3) displayed an enhanced photoelectrochemical (PEC) water oxidation performance, with a photocurrent density of 2.3 mA/cm2 at 1.23 VRHE under the simulated sunlight irradiation, which was 2 times higher than that of bare BiVO4/WO3. The characterization results for the morphological, optical and electrochemical properties of the photoelectrodes revealed that, the enhanced PEC performances could be attributed to the improved charge carrier separation/transport behaviors and the promoted water oxidation kinetics when the photoelectrodes were loaded with CoOx.  相似文献   
72.
Production of hydrogen and oxygen from water splitting reaction under visible light is a simple method for conversion of solar-to-hydrogen energy and it is a hopeful clean and renewable method for H2 fuel generation. However, there is still a lack of potential materials with significant activity under visible light. Because of safety, chemical inertness, low cost, stability and other characteristics, transition metal oxide semiconductors have been widely applied as photocatalysts for hydrogen generation. Albeit, wide usage of semiconductor photocatalysts were prevented by its inability to exploit solar energy of visible region. Here we show synthesis of a nano-sized mixed metal oxide (MMO) Ca3MnO6 through wet-chemistry methods such as co-precipitation, ultrasonic, microwave, reflux, and hydrothermal methods. The nano-sized Ca3MnO6 has initially selected based on morphology and respective particle diameters. The selected sample shows a well-defined single crystal, free from any impurities, complete structural formation, and a band gap energy (Eg) of around 5.3 eV. The best product synthesized in ultrasonic method which shows the best morphology, purity and the highest efficiency for splitting of water to hydrogen and oxygen. Irrespective of preparation methods and morphologies, all samples split water into hydrogen and oxygen, as confirmed from their respective photocatalytic analysis. When the selected sample combined with (NH4)2Ce(NO3)6, the single-crystal Ca3MnO6 nanoparticles split water into hydrogen and oxygen more efficiently under visible light. Our findings demonstrate the importance of nanostructured Ca3MnO6 single-crystal photocatalysts in solar water splitting.  相似文献   
73.
Constructing heterojunction was an efficient way to promote photoelectrochemical (PEC) water splitting performance of TiO2-based nano-photoanode. In this work, we demonstrated the feasible preparation of oxygen vacancies-induced In2O3 (In2O3-x) nanorods/black Si-doped TiO2 (Ti–Si–O) nanotubes heterojunction photoanode for enhanced PEC water splitting. Black Ti–Si–O nanotubes were fabricated through Zn reduction of the as-annealed Ti–Si–O nanotubes, followed by In2O3-x nanorods coupling by a facile electrodepositing and Ar heat treatment. Solar to hydrogen conversion efficiency of the heterojunction photoanode reached as high as 1.96%, which was almost 10 times that of undoped TiO2. The improved PEC properties were mainly attributed to co-doping effects of Si and Ti3+/oxygen vacancy as well as In2O3-x decoration, which resulted in enhanced optical absorption and facilitated separation-transport process of photogenerated charge carriers. Charge transfer process in the composite system and hydrogen production mechanism were proposed. This work will facilitate designing TiO2-based nano-photoanodes for promoting water splitting by integrating with elements doping, oxygen vacancies self-doping and semiconductors coupling.  相似文献   
74.
Improving the absorption of visible light, accelerating the separation of carries and reducing the recombination of electron-hole pairs are critical to enhance photoelectrochemical (PEC) performance of ZnFe2O4. Herein, the ZnFe2O4/Ag/Ag2S films are firstly prepared with a photocurrent density of 0.91 mA/cm2 at 1.23 V vs. RHE, which is 9.10 times higher than that of pristine ZnFe2O4 (0.10 mA/cm2 at 1.23 V vs. RHE). On the basis, Co-Pi cocatalyst is deposited on ZnFe2O4/Ag/Ag2S to further optimize PEC performance of ZnFe2O4, the photocurrent density of ZnFe2O4/Ag/Ag2S/Co-Pi is 1.18 mA/cm2 at 1.23 V vs. RHE. The improved PEC performance of ZnFe2O4/Ag/Ag2S/Co-Pi films could be attributed to: (i) fast transmission of electron-hole pairs owing to 1D ZnFe2O4 NRs; (ii) surface plasmon resonance (SPR) effect of Ag nanoparticles; (ⅲ) visible light absorption is improved by sensitization of Ag2S nanoparticles; (ⅳ) Co-Pi cocatalyst decreases the recombination of electron-hole pairs by capturing holes. This work provides new insights for metal plasmas, sensitizers and cocatalysts synergistically modify photoanodes for efficient PEC water splitting.  相似文献   
75.
To split water and produce hydrogen by white light is an excellent solution for the storage and supply of clean and sustainable energy. Efficiency and stability are the key challenges for a successful exploitation. InGaN, evaluated against other semiconductors, metal oxides, carbon based - and organic materials has most suited intrinsic materials properties. Based on this optimum materials choice we report photoelectrochemical (PEC) hydrogen generation under white light illumination by an InGaN-based quantum nanostructure photoelectrode. No degradation occurs for operation over 10 h. Our novel concept, combining quantum nanostructure physics with electrochemistry and catalysis leads to almost 10% efficiency at zero external voltage. The efficiency rises above 25% at 0.2 V. This is unmatched for a single photoelectrode, representing the most advanced technology of low complexity.  相似文献   
76.
Nanomaterials are beginning to play an essential role in addressing the challenges associated with hydrogen production and storage. The outstanding physicochemical properties of nanomaterials suggest their applications in almost all technological breakthroughs ranging from catalysis, metal-organic framework, complex hydrides, etc. This study outlines the applications of nanomaterials in hydrogen production (considering both thermochemical, biological, and water splitting methods) and storage. Recent advances in renewable hydrogen production methods are elucidated along with a comparison of different nanomaterials used to enhance renewable hydrogen production. Additionally, nanomaterials for solid-state hydrogen storage are reviewed. The characteristics of various nanomaterials for hydrogen storage are compared. Some nanomaterials discussed include carbon nanotubes, activated carbon, metal-doped carbon-based nanomaterials, metal-organic frameworks. Other materials such as complex hydrides and clathrates are outlined. Finally, future research perspectives related to the application of nanomaterials for hydrogen production and storage are discussed.  相似文献   
77.
Rational design of electrocatalycally active materials with excellent performance for renewable energy conversion is of great interest. We have developed a nanosheet array of Ni/Co metal-organic framework (MOF) grown on CoO modified Ni foam (CoO/NF) substrate via the solvothermal process. The high surface area and low resistance of Ni/Co-MOF@CoO/NF (NC@CoO/NF) catalyst contribute to efficient water splitting. We have prepared a series of NC-n/CoO/NF (n = 1–4) catalysts to optimize the molar ratio of the Co atom in Ni MOF-74. Among them, NC-2@CoO/NF shows an excellent electrochemical performance in alkaline medium, i.e., low overpotential of 290 and 139 mV for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. For a two-electrode system with NC-2@CoO/NF, a low cell voltage of 1.54 V at 10 mA cm?2 has been obtained for overall water splitting which is much smaller than that with commercial Ir/C– Pt/C pair. This excellent performance can be attributed to the synergistic effects of Ni/Co-MOF and CoO/NF. In addition, the as-prepared NC-2@CoO/NF exhibits excellent long-term stability. The computational simulation also supports experimental results.  相似文献   
78.
‘Renewable energy is an essential part of our strategy of decarbonization, decentralization, as well as digitalization of energy.’ – Isabelle Kocher.Current climate, health and economic condition of our globe demands the use of renewable energy and the development of novel materials for the efficient generation, storage and transportation of renewable energy. Hydrogen has been recognised as one of the most prominent carriers and green energy source with challenging storage, enabling decarbonization. Photocatalytic H2 (green hydrogen) production processes are targeting the intensification of separated solar energy harvesting, storage and electrolysis, conventionally yielding O2/H2. While catalysis is being investigated extensively, little is done on bridging the gap, related to reactor unit design, optimisation and scaling, be it that of material or of operation. Herein, metals, oxides, perovskites, nitrides, carbides, sulphides, phosphides, 2D structures and heterojunctions are compared in terms of parameters, allowing for efficiency, thermodynamics or kinetics structure–activity relationships, such as the solar-to-hydrogen (STH). Moreover, prominent pilot systems are presented summarily.  相似文献   
79.
A search for efficient, durable, large-area, and economic catalyst material for low-cost production of hydrogen and oxygen is currently a high priority in the field of electrocatalysis (EC). In view of this, a cost-effective, earth abundant, highly stable, Pt free, and large-area (8 cm × 8 cm) bifunctional Ni–B electrocatalyst is reported via simple and economic SILAR method. A highly porous surface of Ni–B film with high surface wettability indicated better electrochemical water-splitting properties for the films and is obtained at 100 cycles. A Low over-potential value to obtain HER (49 mV) and OER (340 mV) at 10 mA/cm2 current suggested that they are comparable to the well-known Pt and RuO electrodes in alkaline medium (1M KOH), respectively. In actual water-splitting setup having Ni–B film (as cathode) and stainless steel (as anode), the hydrogen production of 612 ml/h is obtained at constant potential, which was enhanced by 18% i.e., 726 ml/h when a Ni–B film as both cathode and anode electrode was used. Both the electrodes are highly stable for over 15 days and interestingly they showed 7% increment in the EC performance.  相似文献   
80.
Quadrature spatial modulation (QSM) utilizes the in‐phase and quadrature spatial dimensions to transmit the real and imaginary parts of a single signal symbol, respectively. The improved QSM (IQSM) transmits two signal symbols per channel use through a combination of two antennas for each of the real and imaginary parts. The main contributions of this study can be summarized as follows. First, we derive an upper bound for the error performance of the IQSM. We then design constellation sets that minimize the error performance of the IQSM for several system configurations. Second, we propose a double QSM (DQSM) that transmits the real and imaginary parts of two signal symbols through any available transmit antennas. Finally, we propose a parallel IQSM (PIQSM) that splits the antenna set into equal subsets and performs IQSM within each subset using the same two signal symbols. Simulation results demonstrate that the proposed constellations significantly outperform conventional constellations. Additionally, DQSM and PIQSM provide a performance similar to that of IQSM while requiring a smaller number of transmit antennas and outperform IQSM with the same number of transmit antennas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号